餐边柜厂家
免费服务热线

Free service

hotline

010-00000000
餐边柜厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

做座现阶段真的不需要储能吗

发布时间:2021-10-15 01:58:17 阅读: 来源:餐边柜厂家

现阶段真的不需要储能吗?

最近关于储能能否解决弃风弃光问题有些争论,有观点认为目前的弃风弃光是市场机制造成的,储能解决不了市场机制问题,自然也解决不了弃风弃光问题,所以现阶段的储能设备大多是“赔钱挣吆喝的样子货”。对此观点,我认为值得商榷。

不可否认,我国西部弃风弃光的主因是利益和体制的问题,但也存在西部可再生能源渗透率已经比较高的现实问题。市场机制和光伏、风电的出力特性造成了弃风弃光的现状。诚如上述观点里提到的,机制改革刻不容缓,但我认为从技术上解决弃风弃光问题的摸索也不能止步。

接下来,我将从三个方面论述现阶段发展储能技术的必要性。

储能是实现可再生能源高比例接入电的必要手段

众所周知,我国政府承诺2030年左右碳排放达到峰值,煤电占比逐步下降,可再生能源将实现规模化发展,并大量接入到电。但可再生能源发电具有的波动性、间歇性与随机性会对电带来挑战。

同时,可再生能源发电的特性也制约了自身发展的速度。例如西部地区,由于单纯投资可再生能源项目开发,预计三年内将会出现新能源电力严重过剩、但电量供应严重不足的局面。所以出现了当地建设常规火力发电来维持电量需求平衡的现象。

如果发电侧加入储能设备则可以完美解决上述问题。发电侧储能可以对自然能源出力进行平滑甚至搬移,采用虚拟同步发电技术让光伏发电和风力发电系统的特性接近火力发电等同步发电机系统,是保障电力系统稳定、安全运行的手段。比如我国青海、甘肃、新疆等地,夜间送出白天储存的太阳能电力,错峰送出风电,可大幅度平滑西部可再生能源出力,降低电峰值容量投资,增加电可调度性。此外,发电侧安装储能也可以参与电调频调峰、替代旋转备用容量等辅助服务,无需建设常规能源就可以解决电安全问题,使新能源走上健康发展的道路。而且,从目前的示范项目看,无论是电能质量还是响应速度,储能调频远比常规旋转备用优越。

2016年开始,阳光电源联合江苏爱康、新疆特变等企业在发电侧安装的几套储能平滑系统,目前运行良好。再看看美国和日本,在大量新开发的光伏发电项目里配置10%-30%功率、小时的储能电池的做法越来越普遍,尤其是美国,通过加装储能,可以延缓基础电的投资,甚至减少此类投资,经济效益与社会效益显著。光储混合、风储混合将会是未来标准的解决方案。

储能的经济性在持续的示范与应用中得到快速提高

据测算,未来两三年内,我国储能设备安装量或将实现七到十倍的增长,大规模商业化发展蓄势待发。而德国、日本、澳大利亚这些电价高的国家,储能已接近具备经济性,随着储能设备成本的进一步降低,很快将具备投资价值。

事实上,我国储能技术已获得了巨大的突破。国内锂离子电池、铅炭电池、液流电池、钠硫电池、超临界压缩空气储能、超级电容等主流储能技术的成本已经有了大幅降低。

不可否认,目前储能成本偏高,而且由于还没有形成规模效应,短时间内成本也很难降下来,但我们必须以发展的眼光来看储能。新兴技术的发展是都在持续的示范与应用中逐步提高的,比如前几年国家出台了一系列政策鼓励发展风电和光伏,如今风电已基本实现了平价上,光伏度电成本也大幅下跌,其中组件的价格从10年前的30元/瓦,降到了现在3元/瓦。

因此,建议国家减缓可再生能源补贴标准下调的速度,并要求建设电站时增加储能设备。就像当初培育风电和光伏市场一样,用五年时间来培育储能市场,促进产业的发展。目前储能系统的价格在3元多每瓦时,如果10年内储能系统的成本降到1元每瓦时,业内完全能够接受。

储能是我们理解未来能源结构、抢占先进能源管理至高点的关键所在

人类使用能源会经历三个阶段:过去的化石能源、现在的化石能源与清洁能源并存、以及未来的纯可再生能源。作为推动未来能源发展的前瞻性技术,储能产业在新能源并、电动汽车、微电、家庭储能系统、电支撑服务等方面都将发挥巨大作用。

未来具有间隙性出力特征的可再生能源电站,必须具备一定的平滑能力,而且需要有一定时间常数的备用容量,储能大规模应用可以平滑光伏和风力发电出力,大幅度提高电调度的灵活性和平在塑性范围和直至规定强度(规定非比例延伸强度、规定总延伸强度和规定残余延伸强度)应变速率不应超过0.0025/s稳度,使得人类100%使用可再生能源成为可能。

正因如此,国家从《“十三五”国家战略性新兴产业发展规划》《可再生能源发展“十三五”规划》《能源发展“十三五”规划》《能源技术创新“十三五”规划》,到《关于促进储能技术与产业发展的指导意见》,都致力于从顶层设计,从多能互补、微电、能源互联示范工程等方面进一步推动储能技术应用及成本下降。

让人遗憾的是,青海省出台的可再生能源发电配比10%储能装备的好政策引来质疑,我们在给当地政府的改革进取精神点赞的同时,也呼吁大家,要认清我们的当务之急是培育市场、启动市场,加强产业链的衔接与整合,努力降低成本,给新生事物成长腾挪一些空间,而不是质疑、争论,延误时机。

综上所述,无论从现在还是长远看,储能都是解决间隙能源稳定出力的最终出路,是可再生能源大规模健康发展的最佳解决方案。它的效益不仅体现在存储电量上,而且能够平滑电力资产,打破传统电主架构,最终实现彻底的能源生产和消费的变革。(作者系阳光电源股份有限公司董事长)

今年初,国家能源局正式公布了首批多能互补集成优化示范工程名单,共安排23个项目。示范工程只是起步,据行业估算,多能互补集成优化市场空间将达万亿以上。多能互补集成优化工程作为能源行业的新业态,国内尚无成熟的建设运人体就感觉到特别舒服”营经验,让我们看看国外是如何探索多能互补道路的。

德国创新风电制氢多能互补模式为解决新能源波动性带来了曙光

我国目前已经成为了世界风电装机容量第一的采购这样的大型装备是有点浪费的可再生能源大国,但是这些清洁能源的利用率一直低下,全国的弃风、弃光现象十分严重,新能源企业最高限电高达79%。根据中国储能的报告,2016年我国仅国地区的弃风弃光电量就达到了465亿千瓦时,直接经济损失超过100亿元人民币。从分布上看,新能源开发主要集中在“三北”地区,风电、光电装机容量分别占全国的77%和41%,规模大、当地市场空间却有限,难以就地消纳。从输送能力上看,“三北”地区跨省区输电能力仅有新能源装机总量的22%,电力市场的建设也仍处于起步阶段,难以适应新能源大规模交易、外送的需要。

反观另一个新能源发展大国德国,2016年可再生能源发电量占比已经超过了32%,在某些日子里可再生能源甚至能够覆盖约90%的电力消耗。在如此高的可再生能源比例下,整个电力系统的灵活性也亟待提高。根据德国联邦环境部的分析,为了消纳电越来越多的波动性,需要提高以下四个领域的灵活性:

不同可再生能源比例下的关键灵活性技术来源:BMU

其中储能无疑是解决这个问题的关键,为了实现100%利用可再生能源这个目标,德国通过研究也发现了不同可再生能源份额下这也使它在很多领域上作为替换ABS的材料的关键储能技术。众所周知,可再生能源的比例越高,再往上提升的难度就越大,其中最难以实现,最关键的是电转气技术。这项前沿的技术在很多国家都还面临着许多技术瓶颈、应用困境和盈利问题。但是在德国,2013年就已经建成了第一个商业化的风电制氢多能互补项目——h2-herten。

德国黑尔滕市风电制氢多能互补项目来源:h2herten

以上就是这个项目的其中一个氢能应用点的照片,这是一个以氢气为主要媒介的多能互补系统,附近1.2公里外的风电场每天能够供应该地3000平方米办公室和科研场所的用能需求,以及本地氢燃料汽车和公交车的运行。

照片的背景中可以清晰地看到一个煤矿的旧址,这个名为Ewald的煤矿历史上曾经一度为欧洲最大的煤矿,周围生活着6万居民。这个地区曾因为煤炭资源丰富而兴起,也因为煤电的没落而失去荣光。这个项目让该地区重新焕发了活力,不仅能够享受到便宜清洁的能源,还因为这个试点而得到了全世界的关注。

为了让靠天吃饭的风电能够满足地区供电的可靠性要求,该项目的核心为将多余的风电用于电解生产氢气,氢气能够很好地被储存起来,在缺电的时候通过燃料电池重新转化为电力。这个流程被定义为:以氢能为基础的能源补充系统(HECS),其基础框架如下:

这个项目的HECS设备能够提供每年250兆瓦时的电力和将近6500千克的氢气。一部分氢气通过燃料电池为附近的一个办公建筑提供足够的电力,这栋建筑中午的峰值负荷能够达到50KW,全年用电量在250兆瓦左右。为了能够制定出最优的风电充放电策略,该系统配备了一套风力发电预测系统和负荷预测系统,一个通过该系统计算出的6天风电发电功率和负荷的如下:

如果不加任何的储能系统,多余的风电都要被放弃掉,在无风或者少风的时候甚至会照成缺电的现象,正午在用电高峰的时候风电功率反而较低,以上6天在不加HECS系统情况下的情况如下图:

在整合了HECS系统后,通过一个优化系统,风电就能够保证实时的电力供应。燃料电池的反应速度能够满足系统的需求,也保证了供电的可靠性。下图为真实运行中的情况:

可见在风电不足的时候,HECS系统能够及时响应满足负荷需求。该项目在2013年5月29日开始运行,至今运行良好,尽管这个系统连接了大电保障这栋办公建筑的电力在极端情况下的电力供应,至今也几乎没有使用过大电的电力。

这个项目充分证明了,微电内部通过整合氢能转化设备后自给自足的可能性,多能互补的核心在于通过其他能源形式弥补电力不可大规模储存的缺点,又通过电力的灵活性和便于传输的特性与其他能源形成了优势互补。在未来的能源系统中,我们将会看到更多不同的能源络交织在一起,这个坚强而灵活的能源才是解决可再生能源高比例应用的关键。

数显式电子试验机
数显式电子试验机
数显式电子试验机
数显式电子试验机